180 research outputs found

    Of Mice and Men and the Search for an Alzheimer's Disease Treatment

    Get PDF
    Translational Vision and Neuroscience Research PanelAlzheimer's disease is a common affliction that disrupts the lives of millions and costs the country hundreds of millions of dollars. The federal government, state governments, philanthropic foundations, and industry have all committed resources to solving the Alzheimer's disease problem. Clinical and basic science investigators with a wide range of backgrounds have dedicated themselves to this disease. This talk will review the current state of Alzheimer's disease research and discuss where we stand in terms of a cure. This talk will try to predict where Alzheimer's disease research will go in the near future by considering where it's been in the recent past

    Opposing Effects of ApoE2 and ApoE4 on Glycolytic Metabolism in Neuronal Aging Supports a Warburg Neuroprotective Cascade against Alzheimerā€™s Disease

    Get PDF
    Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimerā€™s disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD

    TOMM40 ā€˜523 associations with baseline and longitudinal cognition in APOEĪµ3 homozygotes

    Get PDF
    TOMM40 ā€˜523 is associated with Alzheimerā€™s disease (AD), but APOE linkage disequilibrium confounds this association. In 170 APOE Īµ3 homozygotes, we evaluated relationships between short and very long TOMM40 alleles and longitudinal declines in three cognitive domains (attention, verbal memory, and executive function). We used factor analysis to create composite scores from 10 individual cognitive tests, and latent growth curve modeling adjusting for clinical status (normal, amnestic mild cognitive impairment, or AD) to summarize initial performance and change over three years. Relative to individuals with two very long TOMM40 alleles, APOE Īµ3 homozygotes with one or two short alleles showed lower baseline cognitive performance regardless of clinical status. The number of short or very long TOMM40 alleles was not associated with longitudinal cognitive changes. In APOE Īµ3 homozygotes from the KUADC cohort, an association between TOMM40 ā€˜523 and cognition is consistent with the possibility that TOMM40 influences cognition independent of APOE.P30AG03598

    Mutations in the Amyloid-Ī² Protein Precursor Reduce Mitochondrial Function and Alter Gene Expression Independent of 42-Residue Amyloid-Ī² Peptide

    Get PDF
    Background:Dominant missense mutations in the amyloid-Ī² protein precursor (AĪ²PP) cause early-onset familial Alzheimerā€™s disease (FAD) and are associated with changes in the production or properties of the amyloid-Ī² peptide (AĪ²), particularly of the 42-residue variant (AĪ²42) that deposits in the Alzheimerā€™s disease (AD) brain. Recent findings, however, show that FAD mutations in AĪ²PP also lead to increased production of longer AĪ² variants of 45ā€“49 residues in length. Objective:We aimed to test neurotoxicity of AĪ²42 vis-Ć”-vis longer variants, focusing specifically on mitochondrial function, as dysfunctional mitochondria are implicated in the pathogenesis of AD. Methods:We generated SH-SY5Y human neuroblastoma cells stably expressing AĪ²PP mutations that lead to increased production of long AĪ² peptides with or without AĪ²42. These AĪ²PP-expressing cells were tested for oxygen consumption rates (OCR) under different conditions designed to interrogate mitochondrial function. These cell lines were also examined for expression of genes important for mitochondrial or neuronal structure and function. Results:The mutant AĪ²PP-expressing cells showed decreased basal OCRs as well as decreased OCRs associated with mitochondrial ATP production, even more so in the absence of AĪ²42 production. Moreover, mutant AĪ²PP-expressing cells producing longer forms of AĪ² displayed altered expression of certain mitochondrial- and neuronal-associated genes, whether or not AĪ²42 was produced. Conclusion:These findings suggest that mutant AĪ²PP can cause mitochondrial dysfunction that is associated with long AĪ² but not with AĪ²42

    Nonobese Male Patients with Alzheimerā€™s Disease Are Vulnerable to Decrease in Plasma Leptin

    Get PDF
    Background:Metabolic dysfunction links to cognitive deficits in Alzheimerā€™s disease (AD). Leptin is an anti-obesity hormone that modulates energy homeostasis and memory function. Although leptin deregulation is implicated in mouse models of AD-like brain pathology, clinical studies have shown inconsistent results regarding an association of leptin with the development of this neurodegenerative disorder. Objective:We investigated the changes of plasma leptin and the correlation of sex-stratified circulating leptin with cognitive performance, AD-related biological markers, and metabolic status in patients with AD and cognitively unimpaired (CU) counterparts. Methods:We used nonobese AD patients and CU controls in a University of Kansas Medical Center (KUMC) cohort. Plasma leptin levels, circulating AD-related molecules and metabolic profiles were examined and analyzed. Results:In contrast to unchanged circulating leptin in females, male patients exhibited decreased plasma leptin levels compared with male CU counterparts. Moreover, plasma leptin showed no correlation with cognitive performance and AD blood biomarkers in patients with either sex. Of note, females but not males demonstrated an association of plasma leptin with body mass index, high density lipoprotein-cholesterol and its ratio with total cholesterol and triglycerides. Conclusion:Our findings suggest that leptin deficiency is associated with nonobese male AD patients, supporting systemic dysmetabolism in the development of this neurodegenerative disorder in certain populations. Although plasma leptin may have limited capacity to reflect disease severity or progression, future mechanistic studies on the regulation of leptin in nonobese patients with AD would deepen our understanding of the sex-related disparity of AD etiopathogenesis

    Microtubule Depolymerization Potentiates Alpha-Synuclein Oligomerization

    Get PDF
    Parkinson's disease (PD) is associated with perturbed mitochondria function and alpha-synuclein fibrillization. We evaluated potential mechanistic links between mitochondrial dysfunction and alpha-synuclein aggregation. We studied a PD cytoplasmic hybrid (cybrid) cell line in which platelet mitochondria from a PD subject were transferred to NT2 neuronal cells previously depleted of endogenous mitochondrial DNA. Compared to a control cybrid cell line, the PD line showed reduced ATP levels, an increased free/polymerized tubulin ratio, and alpha-synuclein oligomer accumulation. Taxol (which stabilizes microtubules) normalized the PD tubulin ratio and reduced alpha-synuclein oligomerization. A nexus exists between mitochondrial function, cytoskeleton homeostasis, and alpha-synuclein oligomerization. In our model, mitochondrial dysfunction triggers an increased free tubulin, which destabilizes the microtubular network and promotes alpha-synuclein oligomerization

    Liver-expressed antimicrobial peptide 2 elevation contributes to age-associated cognitive decline

    Get PDF
    Elderly individuals frequently report cognitive decline, while various studies indicate hippocampal functional declines with advancing age. Hippocampal function is influenced by ghrelin through hippocampus-expressed growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous GHSR antagonist that attenuates ghrelin signaling. Here, we measured plasma ghrelin and LEAP2 levels in a cohort of cognitively normal individuals older than 60 and found that LEAP2 increased with age while ghrelin (also referred to in literature as ā€œacyl-ghrelinā€) marginally declined. In this cohort, plasma LEAP2/ghrelin molar ratios were inversely associated with Mini-Mental State Examination scores. Studies in mice showed an age-dependent inverse relationship between plasma LEAP2/ghrelin molar ratio and hippocampal lesions. In aged mice, restoration of the LEAP2/ghrelin balance to youth-associated levels with lentiviral shRNA Leap2 downregulation improved cognitive performance and mitigated various age-related hippocampal deficiencies such as CA1 region synaptic loss, declines in neurogenesis, and neuroinflammation. Our data collectively suggest that LEAP2/ghrelin molar ratio elevation may adversely affect hippocampal function and, consequently, cognitive performance; thus, it may serve as a biomarker of age-related cognitive decline. Moreover, targeting LEAP2 and ghrelin in a manner that lowers the plasma LEAP2/ghrelin molar ratio could benefit cognitive performance in elderly individuals for rejuvenation of memory

    O-GlcNAc regulates the mitochondrial integrated stress response by regulating ATF4

    Get PDF
    BackgroundAccumulation of mitochondrial dysfunctional is a hallmark of age-related neurodegeneration including Alzheimerā€™s disease (AD). Impairment of mitochondrial quality control mechanisms leading to the accumulation of damaged mitochondria and increasing neuronal stress. Therefore, investigating the basic mechanisms of how mitochondrial homeostasis is regulated is essential. Herein, we investigate the role of O-GlcNAcylation, a single sugar post-translational modification, in controlling mitochondrial stress-induced transcription factor Activating Transcription Factor 4 (ATF4). Mitochondrial dysfunction triggers the integrated stress response (ISRmt), in which the phosphorylation of eukaryotic translation initiation factor 2Ī± results in the translation of ATF4.MethodsWe used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma and HeLa cell-lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) on ISRmt using biochemical analyses.ResultsWe show that TMG elevates ATF4 protein levels upon mitochondrial stress in SH-SY5Y neuroblastoma and HeLa cell-lines. An indirect downstream target of ATF4 mitochondrial chaperone glucose-regulated protein 75 (GRP75) is significantly elevated. Interestingly, knock-down of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, in SH-SY5Y increases ATF4 protein and mRNA expression. Additionally, ATF4 target gene Activating Transcription Factor 5 (ATF5) is significantly elevated at both the protein and mRNA level. Brains isolated from TMG treated mice show elevated levels of ATF4 and GRP75. Importantly, ATF4 occupancy increases at the ATF5 promoter site in brains isolated from TMG treated mice suggesting that O-GlcNAc is regulating ATF4 targeted gene expression. Interestingly, ATF4 and GRP75 are not induced in TMG treated familial Alzheimerā€™s Disease mice model. The same results are seen in a human in vitro model of AD.ConclusionTogether, these results indicate that in healthy conditions, O-GlcNAc regulates the ISRmt through regulating ATF4, while manipulating O-GlcNAc in AD has no effect on ISRmt
    • ā€¦
    corecore